Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Respir Investig ; 61(4): 438-444, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2296480

ABSTRACT

BACKGROUND: Dexamethasone, remdesivir, and baricitinib reduce mortality in patients with coronavirus disease 2019 (COVID-19). A single-arm study using combination therapy with all three drugs reported low mortality in patients with severe COVID-19. In this clinical setting, whether dexamethasone administered as a fixed dose of 6 mg has sufficient inflammatory modulation effects of reducing lung injury has been debated. METHODS: This single-center retrospective study was conducted to compare the treatment strategies/management in different time periods. A total of 152 patients admitted with COVID-19 pneumonia who required oxygen therapy were included in this study. A predicted body weight (PBW)-based dose of dexamethasone with remdesivir and baricitinib was administered between May and June 2021. After this period, patients were administered a fixed dose of dexamethasone at 6.6 mg/day between July and August 2021. The additional respiratory support frequency of high-flow nasal cannula, noninvasive ventilation, and mechanical ventilation was analyzed. Moreover, the Kaplan-Meier method was used to analyze the duration of oxygen therapy and the 30-day discharge alive rate, and they were compared using the log-rank test. RESULTS: Intervention and prognostic comparisons were performed in 64 patients with PBW-based and 88 with fixed-dose groups. The frequency of infection or additional respiratory support did not differ statistically. The cumulative incidence of being discharged alive or oxygen-free rate within 30 days did not differ between the groups. CONCLUSIONS: In patients with COVID-19 pneumonia who required oxygen therapy, combination therapy with PBW-based dexamethasone, remdesivir, and baricitinib might not shorten the hospital stay's length or oxygen therapy's duration.


Subject(s)
COVID-19 , Humans , Retrospective Studies , SARS-CoV-2 , Japan , COVID-19 Drug Treatment , Dexamethasone/therapeutic use
2.
Front Med (Lausanne) ; 9: 935255, 2022.
Article in English | MEDLINE | ID: covidwho-2115354

ABSTRACT

Objectives: This study aims to create and validate a useful score system predicting the hyper-inflammatory conditions of COVID-19, by comparing it with the modified H-score. Methods: A total of 98 patients with pneumonia (without oxygen therapy) who received initial administration of casirivimab/imdevimab or remdesivir were included in the study. The enrolled patients were divided into two groups: patients who required corticosteroid due to deterioration of pneumonia, assessed by chest X-ray or CT or respiratory failure, and those who did not, and clinical parameters were compared. Results: Significant differences were detected in respiratory rate, breaths/min, SpO2, body temperature, AST, LDH, ferritin, and IFN-λ3 between the two groups. Based on the data, we created a corticosteroid requirement score: (1) the duration of symptom onset to treatment initiation ≥ 7 d, (2) the respiratory rate ≥ 22 breaths/min, (3) the SpO2 ≤ 95%, (4) BT ≥ 38.5°C, (5) AST levels ≥ 40 U/L, (6) LDH levels ≥ 340 U/L, (7) ferritin levels ≥ 800 ng/mL, and (8) IFN-λ3 levels ≥ 20 pg/mL. These were set as parameters of the steroid predicting score. Results showed that the area under the curve (AUC) of the steroid predicting score (AUC: 0.792, 95%CI: 0.698-0.886) was significantly higher than that of the modified H-score (AUC: 0.633, 95%CI: 0.502-0.764). Conclusion: The steroid predicting score may be useful to predict the requirement of corticosteroid therapy in patients with COVID-19. The data may provide important information to facilitate a prospective study on a larger scale in this field.

3.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1999501

ABSTRACT

Objectives This study aims to create and validate a useful score system predicting the hyper-inflammatory conditions of COVID-19, by comparing it with the modified H-score. Methods A total of 98 patients with pneumonia (without oxygen therapy) who received initial administration of casirivimab/imdevimab or remdesivir were included in the study. The enrolled patients were divided into two groups: patients who required corticosteroid due to deterioration of pneumonia, assessed by chest X-ray or CT or respiratory failure, and those who did not, and clinical parameters were compared. Results Significant differences were detected in respiratory rate, breaths/min, SpO2, body temperature, AST, LDH, ferritin, and IFN-λ3 between the two groups. Based on the data, we created a corticosteroid requirement score: (1) the duration of symptom onset to treatment initiation ≥ 7 d, (2) the respiratory rate ≥ 22 breaths/min, (3) the SpO2 ≤ 95%, (4) BT ≥ 38.5°C, (5) AST levels ≥ 40 U/L, (6) LDH levels ≥ 340 U/L, (7) ferritin levels ≥ 800 ng/mL, and (8) IFN-λ3 levels ≥ 20 pg/mL. These were set as parameters of the steroid predicting score. Results showed that the area under the curve (AUC) of the steroid predicting score (AUC: 0.792, 95%CI: 0.698–0.886) was significantly higher than that of the modified H-score (AUC: 0.633, 95%CI: 0.502–0.764). Conclusion The steroid predicting score may be useful to predict the requirement of corticosteroid therapy in patients with COVID-19. The data may provide important information to facilitate a prospective study on a larger scale in this field.

4.
J Clin Med ; 11(1)2021 Dec 27.
Article in English | MEDLINE | ID: covidwho-1580642

ABSTRACT

Although previous studies have revealed that elevated D-dimer in the early stage of coronavirus 2019 (COVID-19) indicates pulmonary intravascular coagulation, the state of coagulation/fibrinolysis disorder with normal D-dimer is unknown. The study aimed to investigate how coagulation/fibrinolysis markers affect severe respiratory failure in the early stage of COVID-19. Among 1043 patients with COVID-19, 797 patients were included in our single-center retrospective study. These 797 patients were divided into two groups, the normal D-dimer and elevated D-dimer groups and analyzed for each group. A logistic regression model was fitted for age, sex, body mass index (BMI) ≥ 30 kg/m2, fibrinogen ≥ 617 mg/dL, thrombin-antithrombin complex (TAT) ≥ 4.0 ng/mL, and plasmin-alpha2-plasmin inhibitor-complex (PIC) > 0.8 µg/mL. A multivariate analysis of the normal D-dimer group demonstrated that being male and TAT ≥ 4.0 ng/mL significantly affected severe respiratory failure. In a multivariate analysis of the elevated D-dimer group, BMI ≥ 30 kg/m2 and fibrinogen ≥ 617 mg/dL significantly affected severe respiratory failure. The elevated PIC did not affect severe respiratory failure in any group. Our study demonstrated that hypercoagulation due to SARS-CoV-2 infection may occur even during a normal D-dimer level, causing severe respiratory failure in COVID-19.

5.
Pulm Pharmacol Ther ; 72: 102108, 2022 02.
Article in English | MEDLINE | ID: covidwho-1586767

ABSTRACT

BACKGROUND: The RECOVERY clinical trial reported that 6 mg of dexamethasone once daily for up to 10 days reduces the 28-day mortality in patients with coronavirus disease 2019 (COVID-19) receiving respiratory support. In our clinical setting, a fixed dose of dexamethasone has prompted the question of whether inflammatory modulation effects sufficiently reduce lung injury. Therefore, preliminary verification on the possibility of predicted body weight (PBW)-based dexamethasone therapy was conducted in patients with COVID-19 pneumonia. METHODS: This single-center retrospective study was conducted in a Japanese University Hospital to compare the treatment strategies/management in different periods. Consecutive patients (n = 90) with COVID-19 pneumonia requiring oxygen therapy and were treated with dexamethasone between June 2020 and May 2021 were analyzed. Initially, 60 patients administered a fixed dexamethasone dose of 6.6 mg/day were defined as the conventional group, and then, 30 patients were changed to PBW-based therapy. The 30-day discharged alive rate and duration of oxygen therapy were analyzed using the Kaplan-Meier method and compared using the log-rank test. The multivariable Cox regression was used to evaluate the effects of PBW-based dexamethasone therapy on high-flow nasal cannula (HFNC), noninvasive ventilation (NIV), or mechanical ventilation (MV). RESULTS: In the PBW-based group, 9, 13, and 8 patients were administered 6.6, 9.9, and 13.2 mg/day of dexamethasone, respectively. Additional respiratory support including HFNC, NIV, or MV was significantly less frequently used in the PBW-based group (P = 0.0046), with significantly greater cumulative incidence of being discharged alive and shorter oxygen demand within 30 days (92 vs. 89%, log-rank P = 0.0094, 90 vs. 92%, log-rank P = 0.0002, respectively). Patients treated with PBW-based therapy significantly decreased the use of additional respiratory support after adjusting for baseline imbalances (adjusted odds ratio, 0.224; 95% confidence interval, 0.062-0.813, P = 0.023). Infection occurred in 13 (21%) and 2 (7%) patients in the conventional and PBW-based groups, respectively (P = 0.082). CONCLUSIONS: In patients with COVID-19 pneumonia requiring oxygen therapy, PBW-based dexamethasone therapy may potentially shorten the length of hospital stay and duration of oxygen therapy and risk of using HFNC, NPPV, or MV without increasing serious adverse events or 30-day mortality.


Subject(s)
COVID-19 Drug Treatment , Pneumonia , Respiratory Insufficiency , Body Weight , Dexamethasone , Humans , Respiratory Insufficiency/therapy , Retrospective Studies , SARS-CoV-2
6.
Respir Investig ; 60(1): 146-153, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487946

ABSTRACT

BACKGROUND: Although high-flow nasal cannula (HFNC) oxygen treatment has been frequently used in coronavirus disease 2019 (COVID-19) patients with acute respiratory failure after the 3rd wave of the pandemic in Japan, the usefulness of the indicators of ventilator avoidance, including respiratory rate-oxygenation (ROX) index and other parameters, namely oxygen saturation/fraction of inspired oxygen ratio and respiratory rate (RR), remain unclear. METHODS: Between January and May 2021, our institution treated 189 COVID-19 patients with respiratory failure requiring oxygen, among which 39 patients requiring HFNC treatment were retrospectively analyzed. The group that switched from HFNC treatment to conventional oxygen therapy (COT) was defined as the HFNC success group, and the group that switched from HFNC treatment to a ventilator was defined as the HFNC failure group. We followed the patients' oxygenation parameters for a maximum of 30 days. RESULTS: HFNC treatment success occurred in 24 of 39 patients (62%) treated with HFNC therapy. Compared with the HFNC failure group, the HFNC success group had a significantly higher degree of RR improvement in the univariate analysis. Logistic regression analysis of HFNC treatment success adjusting for age, respiratory improvement, and a ROX index ≥5.55 demonstrated that an improved RR was associated with HFNC treatment success. The total COT duration was significantly shorter in the HFNC success group than in the HFNC failure group. CONCLUSIONS: HFNC treatment can be useful for ventilator avoidance and allow the quick withdrawal of oxygen administration. RR improvement may be a convenient, useful, and simple indicator of HFNC treatment success.


Subject(s)
COVID-19 , Noninvasive Ventilation , Pneumonia , Respiratory Insufficiency , Cannula , Humans , Oxygen , Oxygen Inhalation Therapy , Oxygen Saturation , Pneumonia/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Respiratory Rate , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL